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Empirical  Evaluation of Local Search  Methods 
for  Adapting  Planning  Policies in a Stochastic  Environment 

Abstract 
Optimization  of  expected values in a 
stochastic  domain is common in real 
world  applications.  However, it  is often 
difficult  to  solve  such optimization , 

problems  without  significant  knowledge 
about  the  surface  defined by the 
stochastic  function. In this  paper we 
examine t t x  use of local  search 
techniques  to  solve stochastic 
optimization. In particular, we  analyze 
assumptions of smoothness upon  which 
these  approaches  often rely.  We 
examine these assumptions in the context 
of  optimizing  search  heuristics  for a 
plannerhcheduler  on two problem 
domains.  We  compare  three search 
algorithms  to  improve  the heuristic sets 
and  show :hat the two chosen local 
search  algorithms  perform  well. We 
present  empirical  data  that  suggests  this 
is due  to  smoothness  properties  of  the 
search  space  for the search algorithms. 

1. Introduction 
In many  optimization  applications,  the optimization 
problem is made  more  difficult  because  the  cost  of 
determining  the utility of a solution is expensive (e.g., high 
computational  cost, limited data).  This problem is 
exacerbated in stochastic  domains  where  numerous 
samples  are often  required to  accurately  estimate the 
expected  value  (which is usually the optimization  target) 
based on a probabilistic  decision criterion. In many such 
applications, high dimensionality  (e.g., large search space) 
and  complex optimization spaces (e.g.,  non-convex) 
combine  to  make  the problem  difficult. 

For many large-scale problems, local  search  and  iterative 
improvement  algorithms  have been effective in finding 
good  solutions. In particular, many gradient  following 
approaches  have been successfully applied to difficult real- 
world  optimization  problems LO]. However,  these 

approaches rely on properties of the search  space: that the 
surface has some notion of  smoothness to enable  the  step 
functioll to search for a local maximum; and  that a local 
maximum is likely to  produce an adequate value. 
Furthermore, since the  particular optimization  approach 
often defines the  search operators, it also defines  the locale 
of the strategy search space.  Consequently,  some 
optimization  approach  would  result in a search  space with 
smoothness properties  while other  generation  approaches 
would not. 

We examine this general hypothesis applied  to learning 
heuristics to  guide search for a plannerischeduler that 
solves  problems from a tixed but unknown problem 
distribution. We study the  effectiveness  of local search for 
optimizing planner strategies,  where a strategy  encodes  the 
decision  policy for  the planner  at each  choice  point in the 
search. In particular, we  examine several  issues of  general 
interest. 

I .  We show that two  different local search  stochastic 
optimization  methods find  strategies  that  significantly 
outperform both the  human expert  derived strategy 
and  a  non-local  search strategy. 

2. We show that the  smoothness  property  holds  for both 
local search algorithms  (despite  their  searching two 
quite  different spaces). 

3 .  Surprisingly,  examining  the  learning  trials  showed  that 
the  learning  runs had to  modify  the initial strategies 
considerably before showing  significant  improvement. 
This  either  meant that the  learning  algorithms  were 
making poor initial steps  and better  later ones, or that 
the  learned  strategies lay within  a valley. We present 
empirical  results that show that the latter hypothesis is 
true. 

Because our approach is modular  to  allow arbitrary 
candidate  generation algorithms,  we  are  able  to  examine 
the  problem for different generation  strategies. In 
particular, we examine a local beam-search candidate 
generation  approach and an evolutionary computation 
approac11. 

'The remainder o f  this  paper is organized  as  follows. First, 
we describe the general approach  to  stochastic 
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optimimtion. Seconcl. describe Ilo\+ thc pl;tnning 
application is x 1  instance o f  stochastic optimization. As 
part  of this, we describe the specifics oi' the control 
strategy encoding. Third. ~ v c  describe the mpiricnl 
results. focusing on the h)  potheses  outlined  ubove. 
Finally, we describe related  and  future work i n  this area. 

2. Stochastic  Optimization 
We define a stochastic optimization problem as 
optimization  of  the  expected  value  of a  distribution. With 
a deterministic  planner/scheduler  and a random set  of 
problems, there is sampling  error in the estimation of 
expected utilities  for  a  set of  control strategies,  hence  the 
problem is stochastic. A  non-deterministic 
planner/scheduler  and a  static set  of problems will also 
produce utility distributions with  error.  hence  this  problem 
is also  stochastic. In our  framework, we have a non- 
deterministic  planner/scheduler and a random set  of 
problems, so there is error in estimating each  strategy 
utility distribution, so the problem is stochastic. We define 
a stochastic  domain by utility  estimation  error. 

We now describe  our  general iterative  framework for 
optimization  of  expected  value in stochastic domains. 
First, hypotheses  are  generated by a local search,  then 
these hypotheses  are  evaluated by testing them in the 
application  domain  and  scoring  the result (see Figure I ) .  
This  testing  occurs  under  the direction of a  statistical 
evaluation  component  (described below). When the best 
one  or  several  hypotheses  are  known with the desired 
confidence,  the  process is repeated  (e.g., new hypotheses 
are  generated).  This  entire  cycle is repeated until some 
termination  condition is met (e.g., number  of cycles, 
quiescence). 

To  evaluate  the  set  of  candidate  hypothesis steps, we use 
statistical methods  that  minimize  resources used to satisfy 
a decision  criteria [ I ] ' .  While the algorithm  can  use an 
arbitrary  decision  criterion, in this paper  we focus on the 
use of  the Probably Approximately Correct (PAC) 
requirement,  to  determine  when  the utility of  one 
hypothesis is superior  to  another based on pair-wise 
comparisons. With the PAC decision requirement, an 
algorithm  must  make  decisions with  a  given confidence 
(expressed  as  the probability  that its selection is correct is 
greater than 6) to  select  the  appropriate hypothesis 
(expressed that its expected utility must be within E of the 
true best hypothesis) as expressed in Equation ( I ) .  
Because any  specific decision either satisfies or  does not 
satisfy  the requirement that the  selected hypothesis is 

' In this paper we  focus on the candidate hypothesis 
generation  strategies and the  outer loop. The statistical 
evaluation phase of the learning process is described in 
further  detail in [ 1,2] 
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Figure I Optimization cycle - given a set of 
hypotheses, ranks these  hypotheses,  and  generates a 
next generation based on the rank of the previous 
generation and a generation  approach. 

within t: of the true best hypothesis, the PAC  requiremen 
specifies that over a large number  of  decisions that  the 
accuracy  rate must meet 6. For a  pair of  distributions, it is 
relatively  straightforward to  calculate  the probability  that 
one has  a  higher  expected  utility  than the  other. However, 
selection of a  single  hypothesis from a set  of n hypotheses 
requires  summation of a number  of pair-wise comparisons. 
To minimize  resource  usage, the algorithm  allocates  error 
to each pair-wise comparison based on  the  estimated cost 
of samples for those hypotheses,  and allocates a greater 

2 I'rl 1 1 ,  < 11 ~ , ,  - c 1 t i ,  > [ I  \<., + c1 5 (5 
( 1 )  , ~ I  

(2)  , = I  

error to costly comparisons. Thus, the  overall  error 
criterion is met using the  fewest  resources possible by 
minimizing Equation ( 2 )  after each sample  where c is the 
cost of the best hypothesis and  the  cost  of  the i'" 
hypothesis,  and tl is the number  of  samples  allocated  to  the 
comparison.  The sufficient number  of  samples (n)  can be 
generated, given  a  normal  distribution of  sample utility, by 
estimating  the  difference in expected utility and variance of 
each  hypothesis. In general,  we  cannot  solve this problem 
optimally since the estimates  for  parameters required to 
compute optimal solutions will include  sampling  error. 
For more  information regarding  these  techniques, see [ 1 1 .  

3. Learning  Planner  Heuristics  as  Stochastic 
Optimization 
We investigate  stochastic optimization in the  context of 
learning  control  strategies for the  ASPEN  planner [3]. 
ASPEN uses heuristics to facilitate the iterative  search for 
a  feasible  and high utility plan.  During  each  search step, a 
planner  confronts  a  series of  decisions  such as  which 
schedule conflict to repair or the action to take to repair it. 
The planner  resolves  these choices by applying the 
heuristics. bilsed on wcights for each choice point  heuristic, 



during iterative  repair [ 1-3 I .  I'hus the  weights tlelinc the 
control  strategy o f  the planner and hence the cupccteti 
utility of the  resulting  plans. 

Specifically, i n  our  setup, a  strategy  hypothesis is a vector 
with a weight for  each  heuristic  function and a weight o f  0 
for a heuristic no! in use. The utility o f a  hypothesis can be 
determined by running the planner using the control 
strategy hypothesis on a  certain  problem  instance and 
scoring  the resulting  plan. A problem generator for each 
domain  provides a stochastic  set  of problem  instances t o  
enhance  the  robustness  of  the expected  solution for the 
entire  planning  domain. 

In our ASPEN setup, there are  twelve choice points i n  the 
repair search  space. Higher level choice points  include 
choosing  the  conflict  to resolve  and choosing the  resolution 
method,  such as preferring  open  constraints before violated 
constraints,  or  preferring  to  add  activities  over moving 
them.  Once a resolution  method is selected,  furtherchoice 
points  influence  applications  of  the  choice point (e.%., 
where  to  place a newly  created activity  and how to 
instantiate its parameters). For each choice point,  there are 
many  heuristics  that  might be used. The hypothesis  vector 
is the list of relative weight  that is given to each  heuristic 
for that  choice  point.  Since  the planner is stochastic, the 
choice  of  heuristics  that  are used at each step is 
randomized, so multiple  runs  even for  the  same problem 
instance may yield  a range  of  solutions (plans)  and  hence  a 
range  of utilities. 

The  search  space for  each of  our  domains, given the 
encoding  of the  hypotheses, is large. The sum of each 
choice  point's  hmristic  values must sum  to 100 (so each 
weight can have 101 possible  values), and utilities may 
depend  on  the  correct heuristic values for  multiple  choice 
points. So the  number  of  elements in the search space is: 

where hi is the number of heuristics  for  choice point i. The 
two  domains  we  are using have  approximately 2.3*10'" 
different  possible  hypotheses. Because  there are a limited 
number  of  repair iterations  (in these  experiments,  200 at 
most), there  are a limited number  of  stochastic decisions to 
be made, so it  is unclear  how  much of an impact  small 
differences in the  weights will make. If we  define "small 
difference" as I O  percentage points  for each  hypothesis, 
the space  already  drops  to 4.7* 10'' (substituting I I for I O  1 
in the  above  equation)  although from our experimentation 
it seems  that for some  choice  points this  definition is still 
an overestimate. 

l ) o l ~ 1 ~ l i t l . ~  

I ' l lc  r c p i r  heur15tics \vcre developed for indivitiual domain 
w r c h  rquircnlcnts l i o l n  /\SI'EN applications [.? J .  There 
arc ;11so dt)lll;lin-sl~ecitic heuristics.  which  reference 
prticular tkaturcs o f a  domain i n  order t o  affect the search. 
For each domain. the human expert  strategy hypotheses 
were derived inciependently from (and  prior to) our study 
by m a n u a l  esperimentation and domain  analysis. 

We csamine three different  spacecraft  domains, which 
satisfy the normality assumption  of the  evaluation method. 
l h e  tirst domain. Earth Orbiter- I (EO- I), is an earth 
imaging satellite.  The  domain  consists  of  managing 
spacecraft operations  constraints  (power,  thermal. pointing, 
buffers. telecommLlnications, etc.) and science  goals 
(imaging targets  and calibrating  instruments with 
observation parameters). Each problem instance is used to 
create ;I two-day operations plan: a typical weather  and 
instrument  pattern. observation  goals  (between 3 and 16), 
and a number of satellite  passes (between 50 and 175). 
EO-I plans  prefer  more calibrations  and  observations, 
earlier  start  times for the observations,  fewer  solar array 
and  aperture  manipulations,  lower maximum  value  over 
the entire  schedule horizon for  the  solar  array usage,  and 
higher levels of propellant. The  Comet  Lander  domain 
models landed operations  of a spacecraft  designed  to land 
on a comet  and return a sample  to earth. Resources include 
power,  battery. communications, RAM, communications 
relay in-view,  drill,  and ovens.  Science  includes mining 
and analyzing a sample  from the comet,  and  imaging.  The 
problem generator includes  between 1 and 1 1  mining 
activities and between I and 24  imaging activities  at 
random  start  times. The  scoring  functions  for  the  Comet 
Lander  domain  includes preferences  for  more imaging 
activities,  more  mining  activities, more battery charge  over 
the entire horizon, fewer drill movements,  and fewer 
uplink  activities. 

Setrrch A4ethod.v 
The  two !oca1 search  types  used were a local beam search 
method and an evolutionary  computation  method.  The 
local beam search [9] detines a vector's  neighborhood as 
changing the subset of the  vector associated with a choice 
point by less than a  certain step  size. As opposed  to 
propagating  only highest-ranking  vector,  the search 
propagates a bean1 h of  vectors,  where h is greater  or equal 
to I .  Samples for  each  individual candidate hypothesis are 
generated and scored  using the planner, and  ranking is 
done by pair-wise comparisons  of  these  sample utilities for 
each candidate hypothesis i n  a generation. For each 
generation, the beam search  takes the  top ranking h 
hypotheses,  creates h/,y candidate  neighbor  hypotheses for 
each of them. and ranks  the g candidate hypotheses to 
create the subsecpcnt  generation. 

'The evolutionary  algorithm 151 uses  three general 



operators  (crossover. mutation, and reproduction) t o  
generate the next set of hypotheses. I'arents are cllosen 
based on their  relative  ranking. where the higher-scoring 
hypotheses are  more likely to be parents.  The crossover 
operator was not aware  of  subsets  of the  hypothesis  vector 
related to each choice point, so it could  choose to split 
within one  of  those  subsets. For all operators, the results 
are  normalized  to 100% before evaluation.  Samples for 
each  individual candidate hypothesis are generated and 
scored  using the  planner, and ranking is done by pair-wise 
comparisons  of these sample utilities  for  each  candidate 
hypothesis in a generation. For each  hypothesis i n  a 
generation,  the  algorithm  either  reproduces one  parent or 
crosses  two  parents based on their  ranking i n  the previous 
generation,  and  mutates the  resulting  candidate  hypothesis. 

Random sampling is another  (non-local) method of search. 
Vectors  are  generated at random  and  deep  sampling is 
performed on these  vectors  for a planning  domain.  The 
results show a distribution  of  random hypothesis points  and 
expected utility for  these random points in the strategy 
space. 

Although the locoi search algorithms are  greedy  given  a 
correct  ranking,  due to sampling  error the  ranking 
algorithm can  produce  only an approximation of the 
correct  ranking.  Furthermore, as the overall utility of the 
candidate  hypotheses  continues  to improve,  ranking is 
more  difficult  because the  hypotheses have higher 
variances  relative  to  the  differences in the mean (this is a 
phenomenon  well  understood related to  the Least 
Favorable  Configuration  (LFC) in statistical  ranking). 
Consequently,  the  highest overall  expected utility 
hypothesis  might ;lot occur in the  final  iteration,  and  the 
optimization  algorithm  does not know the  true  utilities of 
the  strategies  sampled,  since it only has  estimates. To 
address this problem, each of  our  algorithms (beam-search 
and evolutionary)  select  the highest  estimated utility 
strategy  from all seen  during  that run (e.g.,  potentially not 
the  last  strategy).  When we  report  that  strategy's utility, 
we  report a true utility  based on a deep  sample  of  many 
more  samples.  Since  each run  takes  several CPU  days,  we 
are  continuing  to perform more optimization  runs to 
provide  more  detailed results. 

4. Empirical Results 
One  simple  question is whether the local optimization 
techniques  improve  on the  human expert strategies. I n  
both the EO-I domain and  the Comet Lander domain,  we 
compare  expected utilities of  the handcrafted expert 
strategy  and  the best and  average strategies found by 
random sampling  (Table I ) .  For local beam search  and 
local genetic  search  we report on the  top  strategy in the 
final set  of  strategies (recall that the beam has  several 

Histogram of Random Samples 
For EO-I Domain 

0 1 5  0 2  0 2 5  0 3  0 3 5  0 4  0.45 

Expected Utility Bin 
. .  

. . ~~ 

Histogram of Random 
Samples For Comet Lander 

0.4  0.43  0.46 0.49 0.52 0.55 0.59 

Expected Utility Bin 
~ ~~ ~~ .. 

Table 2: Histogram Summaries 

The results  sho\v that the local search optimization  was 
able t o  find striltcgies that significantly  improved  on  the 
expert  strategies. We plot histograms  (Table 2) for 
randomly  selected  strategies i n  the Comet  Lander  and EO- 
I domains  (where the arrows on the  histograms indicate 
key values: espcrt and learned strategies).  These  show  that 
the local search  optimization techniques found  very good 
strategies overall i n  thc space. among the  best  possible 
strategies. 
The traces o f  the t w o  local search techniques  operating on 
each o f  the domains  re shown  below (e.g., deep  sample 



utility versus iteration).  The  shape 0 1 '  these graphs 
(showing little early improvement) Icd us to believe that 
the expert strategies are located i n  an area of' local 
minima,  or B valley. of the  search space. I n  order to test 
this con-jecture. we generated random walks in the 
strategy  spaces.  Ihe  size  of the domain gives us a high 
probability  that a random  walk will not cycle. The results 
show that areas  around  the  starting point perform poorly. 
and random, undirected steps starting  at the expert 
hypotheses  produce little improvement.  This data (Figure 
2 ,  Figure 4) confirms that the  expert strategies lay i n  a 
valley  but  that sufficient  gradient information  existed to 
allow  the  learning  to  escape the  valley. One potential 
explanation  could be  that  the  variance of  the problems 
from a single  domain  requires a large amount of 
flexibility in the  planner heuristics (e.g. stochasticity), 
whereas  the  expert  designed  the  set  of heuristics such that 
it would  choose a single  non-random strategy  for  each 
choice  point  every  time  (because it is easier  to understand 
such a strategy). 

. .  

Table I :  Summary Utility  Results 

How  did  the local search techniques  find their way out of 
the  valley?  Local  search  algorithms  are  effective on these 
domains  if  the se'lrch spaces  are  smooth with  respect to 
the  candidate  hypothesis generation  functions. 
Smoothness in a discrete  domain can be determined by 
measuriug  the  difference in expected utility  between 
adjacent  points with respect  to a  search step definition. If 
this difference is small  compared to the  difference in 
expected utility between  two  randomly selected  points in 
the  search  space, this shows the relative  smoothness  of the 
two  domains  for  the  search  algorithms. For random 
search,  adjacent  points  are  any  two  vectors in the strategy 
space.  The  mean  difference in expected utility is 
measured  between  two  adjacent points, where  the initial 
point is a randomly  generated hypothesis,  and the 
adjacent  point is one  step  (as  defined by the  candidate 
hypothesis  generation  function) from  that  point. 
Table 2 shows  the  adjacency information for the three 
different  methods, which can be considered  a 
measurement  of their smoothness.  The mean difference 
between  adjacent  points  shows  that  two adjacent points 
from a random  sample  have four to five  times larger 
difference in utility  from ad-jacent points from the  search 
steps. I f  the  difference in utility is much closer for 
adjacent  points than  for  random  points,  a  stcp using 
search method with  this  property is likely to remain close 

Table 2 Mcittl ;~nd  standard  deviations  for  adjacent 
points  for  the  three  different  search  methods. 

Although sn1oothness helps  the local search technique  step 
around the search  space effectively. using gradient 
methods is another  gamble. We can guarantee by the 
smoothness analysis that a  step will most  likely be within 
some E of the  previous  point, but that does not guarantee 
that improvement using the  gradient  of  that  step will allow 
us to predict  the improvement for  the next  step  along  that 
gradient.  The data suggests that wing  gradient  methods is 
effective i n  finding  a path out of the  valley. so we believe 
that some  of this gradient  information must be preserved in 
these domains  (Figure 3 and Figure 5). 

. . . . . . . 

Figure 2 Two random walks for  the EO-I domain.  The 
first  column is beam  search,  the  second is genetic 
algorithms. 

Figure 3 Two searches  for  the EO-I domain.  The  first 
column is heam  search,  the  second is genetic 
algorithms. 
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Figure 4 Two random  walks for the Comet Lander 
domain.  The  first  column is beam search, the second is 
genetic  algorithms. 

Figure 5 Two searches  for  the Comet Lander domain. 
The  first  column is beam  search, the second is genetic 
algorithms. 

5. Related  Work,  Future  Work,  and 
Conclusions 
There is significant related work on efficient  search 
techniques.  The 4 2  algorithm  optimizes the expected 
output  of a noisy  continuous function, but does not have 
guarantees  on  the result [14]. Response  Surface  Methods 
[O] have been capplied to optimization  problems in 
continuous  domains, but require modification  for discrete 
domains  (as in our  planning heuristics domain). 
Evaluating  control  strategies is a growing area of interest. 
Horvitz [6]  described a method  for  evaluating  algorithms 
based  on a cost  versus  quality tradeoff.  Russell, 
Subramanian,  and Parr[ 101 used dynamic  programming  to 
rationally select  among a set  of control  strategies by 
estimating utility, including cost.  MULTI-TAC  [8] 
considers all k-wise combinations  of heuristics for  solving 
a CSP in its evaluation,  which  also  avoids  problems with 
local maxima,  but  at a large  expense  to the  search. 

Previous  articles  describing  work in adaptive solving 
described  general  methods, which have been developed 
for  transforming a standard problem solver into an 
adaptive  one.  Gratch & Chien  [5a] illustrated  the 
application of  adaptive problem  solving to real world 
scheduling  problems  and  showed how  adaptive  problem 
solving can be cast  as a resource allocation  problem. 
Zhang  and Dietterich used  reinforcement learning to learn 
applicability  condition  for  scheduling operators,  using  a 
sliding time window  of  applicability for those operators 
[ 121. 

O u r  optimizn~ion  ;pproach is equivalent t o  learning a nai’ve 
hyesinI1 rnodel using an expectation klaximization 
;lppro;lch [ 15.161. One difference is that our model 
attcmpts to minimize  resource  usage by updating the  model 
alier each sample. as opposed to sampling in bulk, simply 
hecause ol‘the high sample cost  and the low cost to update 
the model. 
Future work includes determining how to adjust  search 
rates, learning  composite strategies  which  involve logical 
decisions  about the relative usage of heuristics  as  opposed 
to statistical  methods, and a portfolio  approach, which 
combines  heuristics and  chooses which set to use based on 
domain  features judged  statically  or at  run  time. 
Additional work has  been proposed  for  hypothesis 
evaluation  based on a different  set of stopping  criteria, 
which can be resource bounded (specifically considering 
time as the resource),  as in previous  works  on a similar 
topic 141. 

In this  paper we have  focused ‘on selecting  the planner 
strategy with the  highest expected utility. However  other 
aspects of the strategy might be relevant.  For example, 
consistent (e.g., predictable) performance  might be desired. 
In this case  probabilistic  decision criteria  incorporating 
undesirability of a high utility variance  strategy would 
need to be used. In particular, the PAC requirement  does 
not incorporate any preference  or  disliking for  high 
variance  strategies. 

This paper  has  presented  an  approach  to  optimization of 
expected  values in a stochastic  domain  is  common  in  real 
world applications.  Specifically,  we  presented  an 
approach  based  on local search of the optimization  space. 
We presented empirical results  from  an  application  to 
learning  planner  heuristics  in which  learned  strategies 
significantly outperformed  human  expert  derived 
strategies. And we also  presented  empirical  evidence that 
these local search techniques performed  well because 
smoothness properties held  in these  applications. 
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